Thermo Fisher S C I E N T I F I C The world leader in serving science	X-ray Photoelectron
	葛青亲 博士 表面分析 应用专家 赛默飞世尔科技(中国)有限公司

目录	
I: XPS简介 Ⅱ: XPS的基本原理 Ⅲ: XPS的功能和应用 Ⅳ: 赛默飞XPS的应用实例	
2	SCIENTIFIC

单晶硅 •第一代太阳能电	!池	多晶硅、非晶 • 第二代太阳能	ii硅等 ∶电池 ● \$	IGS等化合物薄膜及 薄膜Si系 第三代太阳能电池
种奏	材料 単晶硅	优点 效率最高	缺点 工艺繁琐	
硅系太阳能电池	多晶硅	技不成成 无效率衰退问题 成本远低于单晶硅	成本高 效率低于单晶硅	晶硅类是市场的主流
	非晶硅	成本较低 转换效率较高	稳定性不高	
多元化合物薄膜太阳能电池	砷化镓GaAs 碲化镉CdTe	效率较高 成本较单晶硅低 易于规模生产	原材料砷、镉有剧毒	CIS/CIGS是未来的发展。

33

总结	
 I: XPS简介 II: XPS的基本原理 III: XPS的功能和应用 1. 元素定性和定量 2. 化学价态识别 3. XPS成像 4. 角分辨XPS无损深度剖析 5. 离子束溅射深度剖析 6. REELS技术 7. ISS技术 IV: 赛默飞XPS的应用实例 1. 高效能XPS系统结合多技术应用的XPS联合分析 2. 高效自动化XPS系统用于专业化批量XPS检测分析 3. 专业平行角分辨XPS系统用于无损超薄薄膜深度剖析 	
68	Thermo Fisher

REELS用于材料中的H元素定量						
 利用0能损失峰的强度信息进行H的定量分析 弹性散射几率η 在一定条件下,H与C的散射强度比: η_H/η_c=[(dơ/dΩ)_Hx]/[(dơ/dΩ)_c(100-x)] 式中: dơ/dΩ 为电子的微分散射截面,x为有机物中H的 百分含量。 (dơ/dΩ)_H/(dơ/dΩ)_c=0.021 (E=1keV, θ=π), (dơ/dΩ) 来源于NIST, (<u>http://www.nist.gov/srd/nist64/cfm</u>] 类似XPS,从REELS谱中得出各峰强度,再根据上式可 						
Н	С	0		Cond		
4.743e-5(a ² ₀ /Sr)	2.235e-3 (a ² ₀ /Sr)	4.439e-3 (a ² ₀ /Sr)		$\theta = \pi$, E = 1keV		
2 eV	2/12 eV	2/16 eV		$\theta = \pi$, E = 1keV		
81				Thermo Fisher SCIENTIFIC		